
534 
To cite this paper: Ghamry ME, Ibrahim IA, Elshazly SM, and Fahmy A (2025). Pharmacological Roles of Lithium in Treatment of Diseases: New Insights. World Vet. J., 

15(2): 534-542. DOI: https://dx.doi.org/10.54203/scil.2025.wvj53 

2025, Scienceline Publication 

World
’s
 Veterinary Journal  

 

World Vet J, 15(2): 534-542.  ISSN 2322-4568 

  

 

Pharmacological Roles of Lithium in Treatment of 

Diseases: New Insights  
 

Marwa Elsayed Ghamry
1
* , Islam Ahmed Ibrahim

2
, Shimaa Mustafa Elshazly

2
, and Ahmed Fahmy

2  
 

 

1Al-Ahrar Teaching Hospital, Zagazig, Sharkia, Egypt 

2Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt 
 

*Corresponding author's Email: marwa_pharm11@yahoo.com 

 

ABSTRACT 

Lithium is a delicate, silvery-white alkali metal, the smallest monovalent cation with the symbol Li and atomic 

number 3. The present study aimed to discuss the current knowledge of Lithium's pharmacological and toxicological 

effects, as well as future perspectives on its application in treating various diseases in laboratory animals. Lithium is 

currently being investigated for its potential role in maintaining beta-cell activity and reducing insulin resistance in 

mammals, as it exhibits a diverse array of biological effects. The basis of bipolar disorder medication for acute mood 

periods, switch prevention, preventative treatment, and suicide prevention has been and still is lithium. Lithium has 

lately been investigated in several neurodegenerative diseases and other psychoses. It has demonstrated potential 

benefits in experimental animals in avoiding neurodegeneration and brain damage. Neurological conditions, such as 

traumatic brain damage, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, mercury poisoning, 

alcoholism, and drug dependence, may benefit from lithium's neuroprotective, antioxidant, and anti-inflammatory 

qualities. Lithium supports neuronal survival, repairs damage, reduces inflammation and cell death, promotes 

neurogenesis, maintains cell membranes, and affects signaling pathways related to brain health and recovery. In 

conclusion, lithium remains a key treatment for bipolar disease due to its mood-stabilizing effects and capacity to 

lower the risk of relapse and suicide. However, accumulating data suggested that lithium may affect glucose 

metabolism, potentially causing insulin resistance or decreased glucose tolerance in some people. Additionally, 

Lithium in rats has anti-inflammatory properties with markedly reduced insulin resistance. These findings emphasize 

the importance of monitoring metabolic health during long-term lithium treatment to ensure optimal psychiatric and 

physical health. 
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INTRODUCTION  

  

Johan August Arfwedson, a Swedish chemist, discovered lithium (Li) in the mineral petalite in 1817. Brine deposits and 

mineral springs can also include Li as salt; saltwater has 0.1 parts per million (ppm) of lithium (Balaram, 2024). 

Additionally, lithium may be found in pegmatite ores, which include spodumene (LiAlSi2O6) and lepidolite of different 

structures, or amblygonite (LiAlFPO4) ores, which have Li2O values ranging from 4 to 8.5 %. Lithium comprises around 

0.002% of the Earth's crust (Baran, 2019).  

Lithium is a well-known inhibitor of glycogen synthase kinase-3 (GSK-3; Smith et al., 2002). The GSK3, as a 

Serine/threonine kinase, is essential for several biological processes, including cell division, motility, and survival 

(Eldar-Finkelman, 2002). Through crosstalk with the glucocorticoid (GC) signaling system, it has been shown that 

pharmacological or genetic inactivation of GSK3 resulted in the abrogation of the detrimental effects of GCs in the β-cell 

line INS-1 832/13 (Delangre et al., 2021). In the rat brain, the in vivo obtained evidence through real-time PCR for Li 

inhibition of GSK-3 revealed a significant decrease in lithium β-catenin mRNA levels, which may represent 

compensation for an increase in β-catenin stability (Sinha et al., 2005). Using lithium significantly inhibits brain 

GSK3 in vivo at relevant concentrations to the treatment of bipolar disorder (Gould et al., 2004). Notably, it has been 

demonstrated that lithium chloride (LiCl) mitigates β-cell mortality and dysfunction caused by GCs in isolated islets of 

the pancreas (Delangre et al., 2021). For several years, lithium has been utilized to treat bipolar illnesses (Alda, 2015). 

Such as other medications, lithium usage causes several challenges, including a narrow therapeutic index of lithium, 

which requires careful monitoring of patients' plasma concentrations (Albayrak et al., 2013). Additionally, lithium 

treatment leads to side effects, such as decreased renal function (Schoretsanitis et al., 2022) and hypothyroidism 

(Lazarus, 2009). Long-term effects of Li on rat pups reared on Li chow for three weeks led to regular increased measures 

of anxiety-like behavior. Gene microarray studies of the amygdala revealed that Li affected the expression of gene 

transcripts of the synapse and the cytoskeleton, suggesting that the treatment induced synaptic adjustments (Youngs et 

al., 2006). Nonetheless, more than 60 years of Li administration have demonstrated that side effects are largely 

controllable with careful patient management (Gitlin, 2016). It is worth noting that Li medication has demonstrated 
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therapeutic potential in people for conditions other than mental illnesses. For instance, Li has been shown to have 

immunomodulatory and antiviral properties against the herpes viruses in humans (Rybakowski, 2022). It has also been 

suggested that Li appears to be multifactorial and is intercorrelated with the functions of several enzymes as GSK3 and 

inositol monophosphatase (Brown and Tracy, 2013). In addition, Li leads to thyroid hormone system disruption 

(Chevalier et al., 2024) and vitamins, as well as growth and transforming factors (Schrauzer, 2002). Lithium may 

potentially be used to treat Alzheimer's disease, according to some clinical investigations (Damiano et al., 2023). 

Curiously, a plethora of experimental data indicated that administering Li to preclinical models of diabetes in rats 

enhanced insulin sensitivity and global glucose metabolism (Dangana et al., 2019; Arciniegas et al., 2022).  In a rat 

model of type 2 diabetes, a recent study indicated that Li medication significantly improved glucose metabolism by 

substantially reducing insulin resistance and reducing the inflammation associated with diabetes (Pitasi et al., 2022). 

Furthermore, while taking corticosterone for an extended period, LiCl works as an adjuvant therapy to lessen GC-

induced insulin resistance and excessive gluconeogenesis (Delangre et al., 2023). Lithium appears to have multiple 

biochemical modes of action, including impacts on the functioning of different enzymes, hormones, and vitamins and 

growth and transformation factors (Marshall, 2015; Rizk et al., 2021). Lithium medication may lead to gastrointestinal, 

immunological, metabolic, nephrogenic, neurologic, sexual, and teratogenic effects (Mehrafza et al., 2017; Jafari et al., 

2018). In addition to the Long-term use of Li can affect kidney and thyroid functions (Lieber et al., 2020; Boivin et al., 

2023). The present review article focused on the current findings about Li's pharmacological and toxicological effects, 

and the future perspective of its use in the treatment of different diseases.  

 

TYPE 2 DIABETES  

 

Lithium is primarily known for its use in treating mood disorders, particularly bipolar disorder. However, some studies 

are exploring lithium effects on diabetes; meanwhile, the use of Li for diabetes management is not shared or standard 

practice (Rybakowski, 2020). The involvement of Li in the regulation and management of insulin resistance and type 2 

diabetes may be ascribed to the inhibition of GSK-3. The GSK-3 is an essential serine/threonine kinase that regulates 

gene transcription, glycogen formation, protein synthesis, and cell differentiation in a range of cell types. In a previous 

study, GSK-3 has been connected to the intricate etiology of skeletal muscle insulin resistance in type 2 diabetes in 

people and obese Rattus norvegicus models (Henriksen and Dokken, 2006). Information on the function of GSK-3 as a 

regulator of insulin action on the muscle glucose transport activity of humans has been obtained from studies involving 

sensitive and selective GSK-3 inhibitors. These studies have demonstrated that specific GSK-3 inhibition raises insulin-

stimulated glucose transport activity in insulin-resistant skeletal muscle in humans (Mathur et al., 2017; Burillo et al., 

2021). 

 Another necessary consequence of GSK-3 inhibitors in type 2 diabetes associated with obesity is decreased hepatic 

glucose production, most likely due to the downregulation of genes related to gluconeogenesis (Henriksen et al., 2007). 

Lithium supplementation in vitro boosted skeletal muscle glucose uptake, which seemed to be related to higher levels of 

the glucose transporter type 4 (GLUT4) on the cell surface and lower levels of GLUT4 internalization (Jung et al., 2017). 

According to specific research, Li shields the insulin-producing islets from oxidative damage caused by apoptosis (cell 

death), maintains the integrity of the pancreatic islets, and protects the β-cells, which may preserve or enhance insulin 

secretion in diabetic Wistar rats (Ostrovskaya et al., 2018; Zhang et al., 2021). Lithium has anti-inflammatory properties 

that may help manage the chronic inflammation linked to diabetes, especially type 2 diabetes, including reducing the 

expression of cyclooxygenase-2, inhibiting the production of interleukin (IL1)-1 β and tumor necrosis factor-α (TNF-α), 

and increasing the synthesis of IL-2 and IL-10 (Nassar and Azab, 2014; Hamstra et al., 2023). Although it is not a direct 

mechanism of glucose control, lithium can have a modest osmotic diuretic action that may aid in lowering 

hyperglycemia by encouraging the excretion of glucose through urine in rats (Dousa et al., 1976) and in humans 

(Chambers et al., 1977). 

 

NEUROPROTECTIVE MEDICINE  

 

Bipolar disorder is the primary condition for which lithium is used. However, new studies have indicated that lithium 

may also treat brain damage due to its neuroprotective and neuroplasticity properties (Machado-Vieira et al., 2006; Alda, 

2015; Rana and Singh, 2018). Here is an overview of lithium's potential role in treating brain injuries in rats. Lithium has 

been identified as an effective neuroprotective agent that prevents apoptosis-related cell death in rats. Lithium 

neuroprotection in rats is achieved through multiple intersecting mechanisms, although the specific mechanisms by 

which lithium interacts with these mechanisms remain under investigation (Khan et al., 2016). Through inducing brain-

derived neurotrophic factors, Li maximizes cell survival, stimulating activities in anti-apoptotic pathways, including the 
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phosphatidylinositol 3-kinase/Akt and the mitogen-activated protein kinase pathways (Rana and Singh, 2018). In 

cultured rat cell lines, lithium reduces the pro-apoptotic function by directly and indirectly inhibiting GSK-3β activity as 

well as indirectly inhibiting calcium influx caused by N-methyl-D-aspartate (NMDA) receptor activation (Chiu and 

Chuang, 2011). Lithium-induced regulation of anti- and pro-apoptotic pathways alters a wide variety of downstream 

effectors, including β-catenin, heat shock factor 1, activator protein 1, cyclic adenosine monophosphate (cAMP) 

response-element-binding protein, and the B-cell lymphoma-2 (Bcl-2; Rowe and Chuang, 2004; Ghanaatfar et al., 2023). 

In mouse models of cerebral ischemia, lithium treatment reduces the catalytic activity of certain substrates, leading to the 

stabilization of β-catenin and nuclear factor erythroid 2 (Nrf2) in the cytosol. This stabilization promotes their 

translocation to the nucleus, which may enhance the cellular protective response to ischemic injury, as both proteins are 

crucial regulators of various protective pathways (Chuang et al., 2011).  

The β-catenin modulates Tcf/Lef-1-dependent genes implicated in survival, differentiation, and neuron cell cycle 

dynamics (Nygren et al., 2007). In lithium therapy, pro-inflammatory cytokines such as TNF-α, interleukin (IL)-6, and 

IL-1β, as well as many other cytotoxic chemicals, including reactive oxygen species (ROS) and prostanoids, 

were decreased (Rana and Singh, 2018; Medić et al., 2020). By inhibiting the production of key inflammatory cytokines, 

including IL-1β and TNF-α, Li has demonstrated anti-inflammatory properties. These mechanisms support the efficacy 

of lithium against neurodegeneration during neuroinflammatory events (Yu et al., 2012; Khan et al., 2017; Mehrafza et 

al., 2019).  Additionally, Li improves synaptic plasticity in humans, which is important for memory and learning. 

Specific sites and receptors that control the production, release, turnover, and reuptake of neurotransmitters, including 

serotonin and dopamine, may be impacted by lithium (Puglisi-Allegra et al., 2021). In addition, Li can bind to various 

synaptic serotonin receptors and increase serotonin release in sixty-nine patients with depression (Baumann et al., 1996). 

Therefore, the therapeutic effects of lithium may be partly linked to its capability to regulate neurotransmitter signaling 

within the central nervous system (Contestabile et al., 2013; Dell’Osso et al., 2016). Moreover, lithium influences the 

Wnt/β-catenin signaling pathway, crucially plays a role in the proliferation of neural precursor cells during the 

development of the central nervous system (CNS). The Wnt/β-catenin promotes the proliferation of progenitor cells in 

the developing neural tube, including in the midbrain and hippocampus of mammals (Vallée and Vallée, 2021).  

 

PREVENTING LIVER DAMAGE  

 

Lithium may mitigate liver damage by decreasing inflammatory mediators, such as TNF-α, IL-1, IL-6, interferon (IFN-

γ), IL-8, and ROS. Furthermore, inhibition of GSK-3β can enhance longevity in mice suffering from polymicrobial 

sepsis by improving inflammation through the regulation of nuclear factor (NF-𝜅B) and cAMP responsive element 

binding protein (CREB). This process helps reduce hepatic apoptosis and liver damage in mice (Zheng et al., 2017). The 

inhibition of GSK3β ameliorates liver Ischemia/Reperfusion (I/R) injury by decreasing stress-induced cell death, 

reducing apoptosis, and enhancing liver proliferation in rats (Liu et al., 2013). 

 

SIDE EFFECTS  

 

Lithium has a half-life of 20 to 24 hours in the body. The half-life is prolonged in patients with poor renal function, 

typically 36 hours and ranging from 40 to 50 hours, as documented (Jafari et al., 2018; Zanandrea et al., 2018). Lithium 

is often administered as lithium carbonate, which is available in tablet form (0.4 to 2.0 g/day). A concentration between 

0.5 and 1.2 mM was considered a beneficial medical spectrum. Toxic effects can occur at doses exceeding 1.5 mM, and 

life-threatening outcomes may arise at doses of over 3.5 mM (Zanandrea et al., 2018). Nausea, vomiting, loss of appetite, 

and diarrhea are all common acute adverse impacts of lithium in humans (Lowe et al., 2023). In mice, lithium medication 

has been associated with negative effects on cognition, dermatology, endocrine, in addition to gastrointestinal, 

immunological responses, metabolism, kidney function, neurological health, sexual function, and teratogenic outcomes 

(Jafari et al., 2018). Lithium treatment has been associated with weight gain and sexual dysfunction (Mehrafza et al., 

2017). Most of lithium's adverse effects are due to the ability to suppress the enzyme prostatic acid phosphatase (PAP), 

leading to perturbation of different cellular functions, including RNA processing (Oruch et al., 2014).   

Typically, fine hand tremors that are symmetrical are a key characteristic of tremors induced by lithium. The tremors 

often manifest as postural tremors, in contrast to those caused by antipsychotics in long-term lithium-treated patients 

(Singh et al., 2023). 

 The Long-term use of lithium can affect kidney function, potentially leading to chronic kidney disease in 

individuals receiving treatment (Boivin et al., 2023). Lithium can also affect thyroid function, possibly causing 

hypothyroidism or goiter (Lieber et al., 2020). The clinical trials indicated that lithium is used in both experimental 

animals and human cell lines, as detailed in Table 1.  
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Table 1. Clinical and therapeutic uses of lithium in experimental animals and human cell lines 

Species Dose Expected uses Reference 

Mice 

LiCl (40 or 80 mg/kg bw 

single intraperitoneal 

injection). 

Low-dose lithium medication promoted renal tubular 

epithelial regrowth, accelerated kidney restoration, and 

expedited renal recovery after cisplatin-induced acute kidney 

injury (AKI). Lithium's protective impact was assumed to be 

due to the reduction of GSK-3β, which contributed to the 

preservation of proliferative components, including cyclin 

D1, c-Myc, and HIF-1a. 

Bao et al. (2014) 

Rats 
LiCl (1 mmol/kg bw/day) for 

four weeks. 

Lithium guarded against ventricular arrhythmias by reducing 

nerve growth factor-induced sympathetic innervation via 

antioxidant modulation of the Nrf2/HO-1 circuit. 

Lee et al. (2014) 

Human 

colon 

cancer cell 

line 

LiCl (10, 20, 40, and 60 mM) 

for six, 12, 24, and 48 hours. 

It was revealed that lithium, as a GSK-3β inhibitor, inhibited 

cell survival and proliferation by inhibiting the ROS/ GSK-

3β /NF-𝜅B pathway. 

Li et al. (2014) 

Rats 
LiCl (85 mg/kg bw) for six 

weeks. 

Lithium, as a GSK-3β inhibitor, promoted motor neuron 

propagation from the CNS to the PNS. 
Su et al. (2014) 

Human LiCl (1, 5 mM) for six days. 

Lithium boosted MSC proliferation by suppressing GSK-

3β activity, β-catenin aggregation, and Wnt pathway 

activation. 

Zhu et al. (2014) 

Zebra fish 

embryo 
LiCl (100 µM) for five days. 

Amyloid-β injection into zebrafish embryos led to cognitive 

deficits and elevated tau phosphorylation; both cognitive 

deficits and elevated tau phosphorylation were reversed by 

lithium incubation for a 5days. 

Nery et al. 

(2014) 

Rat LiCl (7 µL/g) for 5 weeks 

In a glaucoma rat model, LiCl lowered intraocular pressure 

(IOP) through the phosphorylation of PERK and the control 

of PERK/ROCK signaling. 

Sun et al. (2014) 

Rats LiCl (0.1 mM) for four days. 

Lithium stimulated GFP-MSC proliferation and neural 

differentiation. Furthermore, lithium stimulated the 

differentiation of transplanted GFP-MSC into more 

oligodendrocytes, astrocytes, and neurons, enhancing neural 

regeneration in the rat spinal cord. It represents a viable 

method for developing a highly effective therapy using 

mesenchymal stem cells (MSCs) for CNS illnesses. 

Dong et al. 

(2015) 

Rats 
Li2CO3 (2.7 mg /kg bw) for 

three weeks. 

In rats, lithium combined with sodium selenite leads to 

depletion of plasma CAT (catalase) and slight enhancement 

of AA  (ascorbic acid), as well as a slight increase in MDA 

(malondialdehyde) 

Musik et al. 

(2015) 

Rats 
LiCl (0.3-30 mM) for 24 

hours. 

The PI3K/Akt/FoxO1 pathway was involved in Li's 

protection against serum-starved cell death. 

Zeng et al. 

(2016) 

Monkey 

LiCl (0.15, 0.25, 0.75 mEq/kg) 

before and during induction of 

anesthesia. 

The Li co-administration prevented acute isoflurane-induced 

neuroapoptosis and reduced oligodendroglia-induced 

apoptosis. 

Noguchi et al. 

(2016) 

Human 
LiCl (10, 15, 25 mM) for 72 

hours. 

The LiCl promoted inhibitory GSK-3β serine 9 

phosphorylation in RD and RH-30 cell lines; however, 

the combined arsenic trioxide (ATO) and LiCl greatly 

diminished GLI1 protein expression, demonstrating elevated 

incidences of cell apoptosis. As a result, the combined 

application of arsenic trioxide and lithium chloride enhances 

the efficacy of rhabdomyosarcoma therapy. 

Schleicher et al. 

(2017) 

Human LiCl (2 mM) for 24 hours. 

The activation of Orai1/STIM1/2 expression and activity in 

Chorea-Acanthocytosis (ChAc) neurons by lithium was 

impaired by pharmacological nuclear factor B NFB 

inhibition. 

Sukkar et al. 

(2018) 

Zebrafish 
LiCl (100 mg/L) for seven 

days. 

In zebrafish, Li reduced scopolamine-induced memory 

impairment, decreased exploration, and boosted 

acetylcholinesterase activity. 

Zanandrea et al. 

(2018) 

Mice 
LiCl (4, 10, 20, 30, 60 mg/kg 

bw) for seven days. 

By modulating the NMDAR/NO and ERK pathways, Li, 

as a GSK3 inhibitor, protects rat cerebellar granule neurons 

from glutamate-induced neurotoxicity. 

Jafari et al. 

(2018) 

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/ascorbic-acid
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Rats 
LiCl (75, 150, and 300 mg/kg 

bw) for 28 days. 

Lithium protected the hippocampus from methamphetamine-

stimulated neurodegeneration via the Akt-1/GSK-3β and 

CREB/BDNF signaling pathways. 

Mehrafza et al. 

(2019) 

Rats 
Li2CO3 (2.4 g/Kg) for 10 

weeks. 

In ovariectomized rats, Li medication averted 

neurobehavioral deficits and increased structural synaptic 

plasticity. Lithium therapy also masked neuroinflammatory 

processes due to the reduction of reactive gliosis and the 

maintenance of blood–brain barrier strength. The Gsk-

3β activity and BDNF levels were controlled by Li, which 

assisted in resisting neuroinflammation, and structural 

synaptic plasticity was conserved. 

Rana et al. 

(2022) 

Mice LiCl (1 mmol/kg) for 28 days. 

Lithium decreased the infarct size, improved the motor 

execution, and alleviated related affective and cognitive 

impairments in the framework of ischemia-reperfusion in the 

middle cerebral artery blockage stroke model in mice. 

Chen et al. 

(2022) 

Dogs 

LiCl (85 mg/kg) for 28 days in 

rats. 

LiCl (5 nM) for three hours in 

PC12 cells. 

 

When compared to untreated dogs, one male dog being 

unilaterally cryptorchid (right side), lithium-treated animals 

had dramatically better trabecular spacing, number, and 

connection density, and serum bone-specific alkaline 

phosphatase levels. In comparison to untreated 

Mucopolysaccharidosis (MPS) I and heterozygous animals, 

growth plates from lithium-treated animals had more 

hypertrophic chondrocytes. 

Lau et al. (2022) 

Rats 
LiCl (5 nM) for 3 hours in 

PC12 cells. 

Lithium promoted healing after spinal cord injury by acting 

as an anti-inflammatory, antioxidant, and anti-pyroptotic 

agent via the Nrf2/heme oxygenase-1 pathway. 

Zhao et al. 

(2022) 

Human LiCl (10 mM) for 24 hours. 

The body's tryptophan catabolism was inhibited by Li. In 

human-derived microglia, the kynurenine pathway was 

initiated by boosting inhibitory GSK3S9 phosphorylation 

and diminishing STAT1S727 and STAT3Y705 phosphorylation 

values. 

Göttert et al. 

(2022) 

Rats -- 
In rats chronically treated with corticosterone, Li treatment 

markedly reduced insulin resistance. 

Delangre et al. 

(2023) 

Rats 
1.4 g/kg, 1.8 g/kg, 2.2 g/kg   

lithium bicarbonate 

Lithium adversely influenced the cellular defense system. 

Furthermore, apart from anti-inflammatory properties, Li 

exhibited cytokine-mediated inflammatory activities in rat 

groups. 

Matur et al. 

(2024) 

Rats 

Four rat groups fed on Li 

g/kg/diet, and high Li (2.2 

g/kg/diet) groups were fed 

with lithium bicar 

The study found that high Li treatment in animals increased 

malondialdehyde levels, decreased superoxide dismutase 

and catalase levels, and increased anxiety-like behaviors. 

The prolonged Li treatment, particularly at doses 

approaching the higher therapeutic range (2.2 g/kg/diet) for 

30 days, induces adverse effects. 

Eraslan et al. 

(2024) 

LiCl: Lithium chloride, AKI: Acute kidney injury, BW: Body weight, cyclin D1: Cell cycle regulators, c-Myc encodes a transcription factor, HIF-1 α: 

Hypoxia-inducible factor 1α, Nrf2/HO-1: Nuclear factor-2/hemeoxygenase-1, ROS/GSK-3β /NF-𝜅B: Reactive oxygen species/glycogen synthase 

kinase 3β/ nuclear factor-kappa-beta, CNS: Central nervous system, PNS: Peripheral nerve system, MSC: Mesenchymal stem cell, PERK/ROCK: 
Protein endoplasmic reticulum kinase/Rho-associated protein kinase, GFP: Green fluorescent protein, MSCs: Mesenchymal stem cells, 

PI3K/Akt/FoxO1: Phosphatidylinositol 3-kinase/ Protein kinase B/ Forkhead boxO1, RD: ERMS cell line,  RH-30:  ARMS cell line, NFB: Nuclear 

factor B, Orai1: Protein abundance of Ca2+ release activated channel moiety (CRAC), STIM1: Ca2+ sensing proteins, NMDAR/NO: N-methyl-D-
aspartate receptors/nitric oxide, ERK: Extracellular signal-regulated kinase, GSK3: Glycogen synthase kinase 3, Akt-1: Protein kinase B, BDNF: 

Brain-derived neurotrophic factor, CREB: Response element binding, STAT1S727: Signal transducer and activator of transcription1 serin 727, 

STAT3Y705: Signal transducer and activator of transcription3 tyrosin 705. 

 
CONCLUSION 

 

Lithium medication has significantly influenced behavior, neurochemistry, and physiology in laboratory animals. 

Lithium functions as a mood stabilizer, decreases hyperactivity and aggression, and exhibits neuroprotective qualities in 

models of brain injury and degeneration. However, prolonged exposure up to 8 weeks or high-dose exposure up to 200 

mg/kg in mice can cause toxicity, including kidney damage, thyroid problems, and developmental defects. These 

findings confirmed lithium's therapeutic potential while emphasizing the need for careful dose and monitoring. In future 

studies, it is recommended to use in vitro application of lithium chloride on human cell lines in order to control glucose 

homeostasis and liver injury.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/corticosterone
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